Mathematics
 Higher level
 Paper 3 - sets, relations and groups

Wednesday 18 November 2015 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 5]

Given the sets A and B, use the properties of sets to prove that $A \cup\left(B^{\prime} \cup A\right)^{\prime}=A \cup B$, justifying each step of the proof.
2. [Maximum mark: 14]

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined as $f: x \rightarrow\left\{\begin{array}{cl}1, & x \geq 0 \\ -1, & x<0\end{array}\right.$.
(a) Prove that f is
(i) not injective;
(ii) not surjective.

The relation R is defined for $a, b \in \mathbb{R}$ so that $a R b$ if and only if $f(a) \times f(b)=1$.
(b) Show that R is an equivalence relation.
(c) State the equivalence classes of R.
3. [Maximum mark: 10]

The set of all permutations of the elements $1,2, \ldots 10$ is denoted by H and the binary operation o represents the composition of permutations.
The permutation $p=(123456)(78910)$ generates the subgroup $\{G, \circ\}$ of the group $\{H, \circ\}$.
(a) Find the order of $\{G, \circ\}$.
(b) State the identity element in $\{G, \circ\}$.
(c) Find
(i) $p \circ p$;
(ii) the inverse of $p \circ p$.
(d) (i) Find the maximum possible order of an element in $\{H, \circ\}$.
(ii) Give an example of an element with this order.
4. [Maximum mark: 18]

The binary operation $*$ is defined on the set $T=\{0,2,3,4,5,6\}$ by $a * b=(a+b-a b)(\bmod 7), a, b \in T$.
(a) Copy and complete the following Cayley table for $\{T, *\}$.

$\boldsymbol{*}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{0}$	0	2	3	4	5	6
$\mathbf{2}$	2	0	6	5	4	3
$\mathbf{3}$	3	6				
$\mathbf{4}$	4	5				
$\mathbf{5}$	5	4				
$\mathbf{6}$	6	3				

(b) Prove that $\{T, *\}$ forms an Abelian group.
(c) Find the order of each element in T.
(d) Given that $\{H, *\}$ is the subgroup of $\{T, *\}$ of order 2 , partition T into the left cosets with respect to H.
5. [Maximum mark: 13]

A group $\left\{D, \times_{3}\right\}$ is defined so that $D=\{1,2\}$ and \times_{3} is multiplication modulo 3 .
A function $f: \mathbb{Z} \rightarrow D$ is defined as $f: x \mapsto\left\{\begin{array}{l}1, x \text { is even } \\ 2, x \text { is odd }\end{array}\right.$.
(a) Prove that the function f is a homomorphism from the group $\{\mathbb{Z},+\}$ to $\left\{D, x_{3}\right\}$.
(b) Find the kernel of f.
(c) Prove that $\{\operatorname{Ker}(f),+\}$ is a subgroup of $\{\mathbb{Z},+\}$.

